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Abstract: The development of sequencing 

technology and the increase in biological data repositories 

have allowed for a more thorough understanding of the 

complex molecular aspects of diseases like cancer. This 

paper evaluates GediNET, an integrative machine learning 

approach that employs a Grouping-Scoring-Modeling 

(GSM) approach to classify different molecular subtypes of 

breast cancer using the BRCA LumAB_Her2Basal dataset 

against different feature selection approaches and machine 

learning classifiers. GediNET distinguishes itself from 

traditional feature selection methods by analyzing groups of 

genes to identify relevant disease-disease associations and 

potential biomarkers. The results of our study show that 

GediNET performs better than traditional approaches in 

terms of accuracy and Area Under the Curve (AUC) metrics. 

This demonstrates that GediNET is effective in 

understanding the genetic intricacies of breast cancer. This 

approach improves the identification of molecular subtypes 

and promotes the development of targeted medicines and 

customized medicine. 
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1. Introduction 
The recent progress in sequencing technologies has 

fundamentally transformed our comprehension of the 

molecular pathways that underlie intricate diseases [1]. 

These technologies offer a vast amount of biological 

data, which allows for a thorough examination of gene 

expression databases [2]. This is crucial for identifying 

gene groups that impact disease progression and gaining 

insight into molecular pathways. The increase in data 

accessibility has resulted in the creation of 

comprehensive biological databases such as 

miRTarBase [3], Gene Ontology( GO) [4], the Gene 

Expression Omnibus (GEO) [5], The Cancer Genome 

Atlas (TCGA) [6], and DisGeNET [7]. These tools are 

essential for performing in-silico experiments and 

creating statistical machine-learning models for disease 

classification and biomarker development. 

The identification of molecular subtypes is necessary for 

the development of tailored therapeutics for breast 

cancer, a multifaceted disease influenced by genetic and 

environmental factors [8]. Classification is crucial for 

improving patient care, as it enables the development of 

customized treatment plans for individuals. Continuing 

study in this area has resulted in identifying several 

biological indicators obtained from diverse data 

repositories. For instance, the excessive expression of 

HER2 (epidermal growth factor receptor II) is 

associated with the rapid and uncontrolled development 

of cells. Patients with HER2-positive breast cancer 

(BRCA) often have a worse prognosis than those whose 

tumors do not have an overexpression of HER2 [9]. This 

comprehensive comprehension aids in formulating 

targeted therapies that can alleviate the rapid 

advancement of the disease in affected persons. 

Human disorders are frequently characterized by 

significant disruptions in genes or proteins within 

molecular pathways, resulting in many symptoms, some 

of which can be highly severe. Based on "guilt-by-

association," interconnected genes are likely to have 

shared functions, which can be attributed to genetic or 

physical linkages. Therefore, genes associated with 

similar diseases or phenotypes are likely to have 

resemblances [10]. This comprehension has accelerated 

a notable transformation in research approaches, 

transitioning from concentrating on individual genes or 

characteristics to analyzing gene clusters within a 

framework incorporating extensive biological 

knowledge. These techniques improve the level of 

analysis beyond what can be achieved with classic 

clustering and machine-learning methods. Furthermore, 

the introduction of high-throughput technology in the 

field of biology has led to a shift towards more 

comprehensive research approaches, replacing 

traditional methods in machine learning and clustering 

[11]. 

Researchers are utilizing advanced techniques to 

provide a comprehensive framework for analyzing 

individual diseases by harnessing biological knowledge. 

When constructing bioinformatics pipelines, modern 

methods rely more on existing information rather than 

solely relying on statistics and machine learning 

algorithms. This is because these algorithms may 

overlook the crucial biological context. These 
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integrative methods are essential progressions in the 

field, combining a thorough comprehension of 

biological processes with state-of-the-art analytical 

techniques to produce a more detailed understanding of 

gene expression data and the fundamental causes of 

diseases [12]. The integrative approaches not only 

improve our comprehension of disease pathophysiology 

but also facilitate the creation of specific treatments and 

diagnostic methods, thus advancing the limits of 

customized medicine [13]. 

The Grouping-Scoring-Modeling (GSM) framework, 

introduced by Yousef et al. [14], [15], represents a 

significant change in traditional approaches and feature 

selection methodology. The GSM framework differs 

from conventional models as it identifies individual 

genes by grouping features into distinct groups. The 

groupings of genes are evaluated and assigned scores, 

which are then used to create a categorization model 

based on the highest-ranking groups. The GSM is 

unique because it can incorporate computational, 

statistical, or domain-specific knowledge into the 

grouping process. This requires a lot of expertise and 

makes each application unique and powerful. GSM has 

been integrated into various computational tools, such as 

SVM-RCE-R [16], maTE [17], CogNet [22], 

miRcorrNet [18], PriPath [19], miRGediNET [20], and 

miRdisNET [21] and others.  

The introduction of gene grouping in gene analysis 

originated from the SVM-RCE-R program [22], which 

utilizes Support Vector Machines for Recursive Cluster 

Elimination to categorize genes based on their 

expression values, awarding scores using a machine-

learning method. miRcorrNet [18], 3Mint [23], and 

miRModuleNet [24] are tools that analyze and extract 

groups from datasets, including mRNA and miRNA 

information. Additional tools such as maTE [17] 

specifically target microRNA target genes. CogNet [25] 

and PriPath [19] employ KEGG pathways.  Utilizing 

information from multiple biological databases, the 

miRGediNET [26] is a unique tool that explores the role 

of miRNAs in the development of disease. On the other 

hand, microBiomeGSM [27] utilizes taxonomic 

information from metagenomics datasets to classify 

diseases based on GSM principles. 

GediNET [28], an integrative GSM approach, intends to 

discover disease-disease associations (DDAs) by 

grouping genes into groups according to disease 

knowledge obtained from the DisGeNET database [7]. 

Subsequently, these groupings are examined to identify 

the most noteworthy gene sets to classify diseases. 

GediNET utilizes the input from the leading groups to 

enhance the training of machine-learning models, 

allowing for the identification of common genetic 

markers among different diseases. The updated version 

of GediNET, named GediNETPro [29], utilizes Monte 

Carlo cross-validation and clustering techniques, such as 

K-means, to enhance the identification of disease 

groups. Another tool enhances this process by using a 

statistical method to measure the semantic similarities 

between diseases [30], enabling a detailed examination 

of disease clusters by applying Monte Carlo cross-

validation and semantic evaluation. 

This study thoroughly evaluates the GediNET using a 

Grouping-Scoring-Modeling (GSM) approach 

compared to traditional feature selection methods and 

several feature selection approaches. It utilizes various 

classifiers and feature selection strategies on the BRCA-

TCGA dataset. Examining these comparative dynamics, 

our goal is to emphasize GediNET's proficiency in 

traversing and comprehending the intricate genomic 

landscape of breast cancer. This will highlight the 

significant differences in performance, analytical 

accuracy, and the level of biological understanding 

obtained from the dataset. 

 

2. Dataset  

In this study, we employed the Breast Invasive 

Carcinoma (TCGA-BRCA) dataset [6], a 

comprehensive collection of gene expression data 

designed for breast cancer research. The dataset was 

obtained from the Xena Public Data Hubs [31], which 

provide access to a diverse collection of mRNA datasets. 

These datasets enable researchers to investigate 

different aspects of cancer biology by analyzing gene 

expression profiles. 

Our dataset primarily consists of tumor samples that are 

classified into four molecular subtypes of breast cancer: 

Luminal A (LumA), Luminal B (LumB), Her2-enriched, 

and Basal-like [8]. To optimize our study and improve 

the precision of our results, we have merged these 

findings into two primary categories for classification: 

1. The Positive Group (LumA) consists of 302 samples 

belonging to the Luminal A subtype, which is 

characterized by a more favorable prognosis and lower 

grade in comparison to other subtypes. 

2. The Negative Group (LumBHer2Basal) comprises 

247 samples, including the Luminal B, Her2-enriched, 

and Basal-like subtypes. These subtypes are typically 

associated with a more aggressive behavior and worse 

results. 

The analytical approach began by extracting the raw 

gene expression numbers from the TCGA database. 

Afterward, the data was preprocessed by normalizing 

the counts using the TMM method from the edgeR 

package [32]. Normalization is a critical approach that 

accounts for the impacts of RNA composition. It allows 
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for more precise comparisons between samples by 

stabilizing variance and improving the discovery of 

genes that are expressed differently. 

 

3. Methodology 

Handling with datasets that have a large number of 

dimensions poses a considerable difficulty in 

classification tasks because of the intricate nature and 

size of the data. To properly handle this, it is crucial to 

have a robust feature selection method that reduces the 

number of features and simplifies the classification 

process [14]. 

Our study utilizes GediNET [28], a novel feature 

selection strategy that diverges from traditional 

approaches by prioritizing the collective analysis of 

gene groups rather than individual genes associated with 

specific disorders. This methodology categorizes genes 

according to their associations with different diseases, 

considering the intricate biological context in which 

these genes operate. Subsequently, these groupings are 

evaluated and assigned scores to ascertain their 

significance in disease categorization. GediNET utilizes 

these scores to identify the most prominent gene groups, 

which are subsequently employed to train a machine-

learning model, specifically a Random Forest classifier. 

We use a 100-fold Monte Carlo cross-validation 

(MCCV) technique [33] to accurately assess 

performance measures. In this method, 90% of the data 

is allocated for training, and the remaining 10% is used 

for testing. The subsets are randomly selected in each 

iteration to ensure thorough coverage and unbiased 

evaluation. 

This study aims to evaluate the performance of 

GediNET in comparison to traditional feature selection 

methods on the BRCA LumA_LumBHer2Basal dataset. 

The comparative analysis incorporates various well-

established feature selection techniques, including 

conditional mutual information maximization (CMIM) 

[34], minimum redundancy maximum relevance 

(mRmR) [35], information gain (IG) [36], SelectKBest 

(SKB) [37], Fast Correlation Based Filter (FCBF) [38], 

and extreme gradient boosting (XGB) [39]. The 

effectiveness of several classifiers, such as Random 

Forest (RF) [40], Support Vector Machine (SVM) [41], 

LogitBoost [42], Decision Tree [39], and AdaBoost 

[43], was evaluated using these feature selection 

techniques. Uniform settings were used for all 

algorithms to ensure uniformity. Each feature selection 

approach, including GediNET, was responsible for 

picking a set of 75 features that would be best for 

analysis. This decision was based on the findings 

obtained from the top two groups in ten different 

datasets. This standardized approach effectively 

assesses GediNET's capacity to improve feature 

selection and classification accuracy in breast cancer 

subtypes. 

 

4. Results  

Table 1 displays the results obtained by GediNET on the 

BRCA LumA_LumBHer2Basal dataset. It gives a 

comprehensive examination of the performance changes 

when additional gene groups are included in the study. 

At the initial phase, when the number of groups is set to 

1, the performance measures depend exclusively on the 

genes in the first group. The initial setup of this model 

provides a summary of its capability to categorize 

different forms of breast cancer with an accuracy of 

90.1%, a sensitivity of 94.1%, and a specificity of 

81.7%. Significantly, the Area Under Curve (AUC), 

which is a vital metric for evaluating the model's 

capacity to differentiate between classes, exhibits a great 

first performance of 96.1%. 

When transitioning to #Groups = 2, which involves 

analyzing the top two ranked groups of genes together, 

there is a noticeable enhancement in most measures. The 

accuracy exhibits a modest increase to 90.6%, the 

sensitivity experiences a marginal improvement to 

94.4%, and the specificity demonstrates a rise to 82.6%. 

These results indicate an enhanced performance 

resulting from the inclusion of additional genetic 

information. This pattern highlights the extra value 

provided by each gene group, demonstrating an 

improved ability to predict and a strong resilience of the 

model. 

Following this trend, the performance metrics for each 

consecutive group (ranging from #Groups = 3 to 

#Groups = 10) exhibit a consistent and stable level, with 

only minimal variations. When the number of groups is 

set to 6, the accuracy reaches its highest point at 91.0%, 

the sensitivity reaches its highest point at 95.0%, and the 

AUC remains consistently high at 96.4%. The results 

suggest that the initial gene groups contribute 

significantly to the predictive capabilities of the model, 

but further additions improve its accuracy and 

resilience. 

The consistent AUC values observed across all groups, 

predominantly around the 96% range, indicate that 

GediNET can discriminate regardless of the number of 

gene groups utilized. The findings demonstrate a model 

that initially exhibits excellent efficacy and after that 

achieves incremental yet significant enhancements by 

incorporating supplementary gene clusters. This pattern 

indicates that although the main gene groups are strong 

predictors, the supplementary groups aid in capturing 

more specific details, which may be associated with less 

dominant but medically significant genetic expressions. 

This offers a more comprehensive understanding of the 

genomic landscape in different breast cancer subtypes. 
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Table 1: Performance Metrics of GediNET Across Top 10 Gene 

Groups in the BRCA LumA_LumBHer2Basal Dataset Over 100 Monte 

Carlo Cross-Validation Iterations. 
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1 0.901 0.941 0.817 0.928 0.961 0.769 0.917 

2 0.906 0.944 0.826 0.931 0.964 0.781 0.921 

3 0.907 0.947 0.824 0.933 0.965 0.784 0.92 

4 0.907 0.944 0.829 0.932 0.964 0.783 0.922 

5 0.905 0.946 0.818 0.931 0.964 0.777 0.918 

6 0.91 0.95 0.828 0.935 0.964 0.791 0.922 

7 0.907 0.946 0.825 0.932 0.964 0.782 0.92 

8 0.906 0.949 0.817 0.932 0.963 0.781 0.917 

9 0.905 0.947 0.817 0.931 0.962 0.778 0.918 

10 0.909 0.948 0.828 0.934 0.961 0.788 0.922 

 

Table 2 shows GediNET's effective identification of 

relevant gene groups linked to different forms of cancer. 

Each association is validated by robust rank aggregation 

[44] p-values, showing a high level of statistical 

significance. The analysis demonstrates a significant 

genetic link to Glioblastoma Multiforme, as indicated by 

a very low p-value of 1.5994E-87. This relationship 

involves TNMD, CFH, GCLC, CFTR, and KRIT1 

genes. These genes have the potential to play crucial 

roles in the pathogenesis of the disease, indicating 

prospective targets for new therapeutics. The gene group 

consisting of GCLC, CFTR, KRIT1, CD99, and 

MAD1L1, which is linked to the Malignant Neoplasm 

of the Stomach, shows a p-value of 2.77741E-86, 

indicating a strong association with the development of 

stomach cancer. 

Additionally, Adenomatous Polyposis Coli and 

Leukemia are associated with gene sets that consist of 

TNMD, MAD1L1, TAC1, PAFAH1B1, and CFTR, 

BAD, CD99, CASP10, respectively, both demonstrating 

remarkably low p-values (1.05524E-85 and 3.49327E-

85). These findings confirm the effectiveness of 

GediNET in revealing significant connections between 

diseases and genes and provide opportunities for further 

investigation into the functions of these genes in the 

genesis and progression of cancer. An in-depth analysis 

is essential for furthering our comprehension of 

oncogenic pathways and improving the precision of 

cancer therapy techniques. 
 

Table 2: The results obtained using the RobustRankAggreg algorithm 
in the GediNET Tool 

Group p-value List of genes 
GLIOBLASTOMA 

MULTIFORME 

1.5994E-87 TNMD, CFH, GCLC, CFTR, 

KRIT1, … 

MALIGNANT 

NEOPLASM OF 

STOMACH 

2.77741E-86 GCLC, CFTR, KRIT1, CD99, 

MAD1L1, … 

ADENOMATOUS 

POLYPOSIS COLI 

1.05524E-85 TNMD, MAD1L1, TAC1, 

PAFAH1B1 

LEUKEMIA 3.49327E-85 CFTR, BAD, CD99, CASP10, … 

 

Table 3 displays a thorough examination of different 

techniques for selecting features, assessed using many 

performance indicators, in the specific context of 

categorizing breast cancer subtypes. The compared 

approaches consist of Extreme Gradient Boosting 

(XGB), Information Gain (IG), SelectKBest (SKB), 

Conditional Mutual Information Maximization 

(CMIM), Fast Correlation Based Filter (FCBF), 

Minimum Redundancy Maximum Relevance (mRmR), 

and GediNET. The evaluated metrics are Accuracy, 

Sensitivity, Specificity, F-measure, Precision, and Area 

Under the Curve (AUC). 

Concerning XGBoost and GediNET, both approaches 

demonstrate exceptional performance in all measures, 

with XGB getting almost the greatest scores in 

Accuracy, Sensitivity, Specificity, and F-measure, 

closely followed or matched by GediNET. Both 

approaches demonstrate exceptional proficiency in 

accurately distinguishing between cancer subtypes, as 

seen by their high AUC ratings (0.99). These methods 

are particularly effective in managing the complex data 

structures commonly encountered in genomic data. This 

is likely because they have algorithmic solid 

underpinnings that take use of both the relevance of 

individual features and the relationships between 

groups. 

 Regarding Information Gain (IG) and SelectKBest 

(SKB), although these approaches exhibit strong 

performance and consistent results, they are somewhat 

surpassed by XGB and GediNET. Their performance 

demonstrates a commendable equilibrium between 

sensitivity and specificity, showcasing a robust capacity 

to detect pertinent characteristics that help to precise 

classification of cancer subtypes. 

Concerning Conditional Mutual Information 

Maximization (CMIM) and Fast Correlation Based 

Filter (FCBF), these approaches exhibit intermediate 

performance with lower scores in comparison to XGB, 

IG, SKB, and GediNET, specifically in terms of 

Accuracy and F-measure. The Minimum Redundancy 

Maximum Relevance (mRmR) method demonstrates 

the poorest performance compared to the other methods 

examined, with notably lower scores in all parameters. 

This suggests that mRmR may have difficulties 

processing the complex and diverse data commonly 

encountered in gene expression data for different forms 

of cancer. Its method to decrease repetition may 

excessively simplify the range of features, perhaps 

leaving out vital information required for precise 

categorization. 

To summarize, the data presented in Table 3 highlights 

the significance of selecting a suitable feature selection 

technique that aligns with the unique attributes of the 

dataset and the intended objectives of the research. The 

exceptional efficacy of XGB and GediNET implies that 

techniques that successfully integrate intricate 

relationships between characteristics and utilize 

machine learning algorithms capable of handling 

extensive datasets with sophisticated patterns are 

especially well-suited for genomic data processing. This 

understanding is crucial for advancing diagnostic tools 

and customized medicine techniques in oncology since 

the accurate categorization of cancer subtypes is 

imperative for efficient treatment strategizing. 
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Table 3:  Evaluating the Performance of Different Feature Selection 

Methods 
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XGB 0.97 0.98 0.96 0.98 0.97 0.99 

IG 0.95 0.97 0.95 0.96 0.96 0.98 

SKB 0.93 0.95 0.93 0.94 0.94 0.96 

CMIM 0.7 0.73 0.71 0.72 0.71 0.75 

FCBF 0.65 0.67 0.64 0.66 0.65 0.68 

mRmR 0.5 0.52 0.49 0.5 0.51 0.53 

GediNET 0.98 0.99 0.97 0.98 0.98 0.99 

 
Table 4: Evaluation of Machine Learning Methods Paired with 
Feature Selection Techniques: A Performance Comparison Using 

Accuracy, Sensitivity, Specificity, F-measure, Precision, and AUC 

Metrics. 
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RF FCBF 0.66 0.76 0.57 0.66 0.67 0.72 

LogitBoost FCBF 0.59 0.85 0.34 0.66 0.55 0.70 

LogitBoost IG 0.96 0.97 0.947 0.95 0.94 0.99 

Adaboost MRMR 0.51 0.32 0.68 0.46 0.44 0.50 

RF CMIM 0.56 0.47 0.66 0.50 0.56 0.62 

RF GediNET 0.98 0.99 0.96 0.99 0.98 0.99 

 

Table 4 provides the performance of various machine 

learning (ML) methods paired with different feature 

selection (FS) techniques, measured across several 

metrics on the BRCA LumA_LumBHer2Basal Dataset.  

Concerning Random Forest with FCBF, this 

combination has moderate performance with an 

accuracy of 0.66. The sensitivity is relatively high at 

0.76, suggesting it can identify the positive cases well. 

However, its specificity is low at 0.57, indicating a 

weakness in correctly identifying negative cases. The F-

measure and precision are consistent with accuracy, and 

the AUC of 0.72 suggests moderate discriminative 

ability. 

Concerning LogitBoost with FCBF, the accuracy is low 

at 0.59. Still, it has a high sensitivity of 0.85, which 

means it identifies most positive cases, albeit at the cost 

of a low specificity of 0.34, indicating many false 

positives. The F-measure and precision are not in line 

with the high sensitivity, and the AUC of 0.70 is modest. 

Pairing LogitBoost with IG, this method shows 

excellent performance across all metrics with an 

accuracy of 0.96. High sensitivity at 0.97 and a 

specificity of 0.947 indicate a strong balance in 

identifying positive and negative cases. The F-measure 

and precision are also high, reflecting a balanced 

precision-recall trade-off. An AUC of 0.99 shows 

outstanding discriminative ability. 

The Adaboost with MRMR combination demonstrates 

underwhelming performance with only a 0.51 accuracy 

and a sensitivity of 0.32, which is relatively low, 

indicating difficulty in correctly identifying true 

positives. The specificity is somewhat better at 0.68, but 

the ability to distinguish between classes is no better 

than a random chance, as shown by the AUC of 0.50. 

Similarly, the Random Forest paired with CMIM also 

shows lackluster results, with an accuracy of 0.56 and a 

low sensitivity of 0.47. Though it performs slightly 

better in specificity at 0.66, the F-measure and precision 

are moderate, and the AUC of 0.62 points to a relatively 

weak discriminative power. Both methods suggest 

significant room for improvement in effectively 

classifying the given dataset. 

This combination of Random Forest with GediNET is 

highly effective, with an excellent accuracy of 0.98. It 

achieves almost perfect sensitivity at 0.99 and strong 

specificity at 0.96, indicating it can distinguish very 

effectively between positive and negative cases. The F-

measure and precision are at 0.99 and 0.98, respectively, 

supporting the high accuracy. The AUC is also at an 

impressive 0.99, indicating superior discriminative 

ability. 

Table 4 shows that the Random Forest with GediNET 

and LogitBoost with IG combinations show 

exceptionally high performance on the BRCA 

LumAB_Her2Basal dataset. In contrast, the Adaboost 

with MRMR and the LogitBoost with FCBF methods 

show considerable weaknesses, reflected in their lower 

metrics across the board. These results indicate the 

importance of the right pairing between feature selection 

methods and machine learning algorithms to achieve 

optimal performance. 

 
Table 5: AUC Performance metrics of Adaboost, Decision Tree, 
Logitboost, and Random Forest Models Across Various Feature 

Selection Methods for the BRCA LumAB_Her2Basal Dataset. 
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Adaboost 0.99 0.99 0.99 0.68 0.50 0.58 

DT 0.96 0.93 0.944 0.49 0.50 0.50 

Logitboost 0.99 0.99 0.99 0.70 0.50 0.58 

RF 0.99 0.99 0.99 0.72 0.47 0.62 

 

Table 5 compares the AUC performance metric for 

several models using different feature selection methods 

on the BRCA LumAB_Her2Basal dataset. Adaboost 

performs exceptionally well with SKB, IG, and XGB 

feature selection methods, achieving AUCs close to 

0.99, indicating excellent discriminative ability. 

However, its performance drops significantly with 

FCBF, MRMR, and CMIM, with AUCs ranging from 

moderate to no better than random chance. 

Decision Tree (DT) shows good discriminative power 

with SKB and XGB, with AUCs just above 0.94, but its 

effectiveness diminishes with IG and further drops with 

FCBF, MRMR, and CMIM, where AUCs are close to 

0.50, suggesting poor performance. 

Logitboost exhibits high AUCs with SKB, IG, and 

XGB, similar to Adaboost, reflecting strong 

classification capabilities. However, like Adaboost, it 

sees a decline in performance with FCBF and even 

lower AUCs with MRMR and CMIM. 

Random Forest (RF) achieves outstanding AUC with 

XGB at nearly 1.0 and strong results with SKB and IG. 

Its AUC with FCBF is moderate and underperforms 

with MRMR and CMIM, though it still performs better 

than DT and Adaboost with these feature selection 

methods. 

We can conclude that XGB, as a feature selection 

method, consistently leads to the highest AUC across all 

machine learning models, indicating a robust synergy. 
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SKB and IG also have strong AUC performance, 

particularly with Adaboost, Logitboost, and RF models. 

Conversely, FCBF, MRMR, and CMIM feature 

selection methods show significantly weaker 

discriminative power when paired with these ML 

models, with MRMR consistently at the lower end of the 

spectrum.  

 

5. Discussion  

This study comprehensively evaluates the effectiveness 

of the GediNET technique, which uses the Grouping-

Scoring-Modeling (GSM) methodology, in categorizing 

different subtypes of breast cancer within the BRCA 

LumA_LumBHer2Basal dataset. GediNET 

distinguishes itself from conventional feature selection 

approaches by strategically emphasizing gene groupings 

rather than individual genes. This emphasis enables 

exploring intricate connections between diseases and 

discovering vital biomarkers necessary for developing 

precise treatments and individualized medicine. 

GediNET's exceptional performance in terms of 

accuracy and the Area Under the Curve (AUC), as 

emphasized in our analysis, demonstrates its strength in 

managing the complex genomic data related to breast 

cancer. This approach utilizes pre-existing biological 

knowledge to categorize genes, resulting in improved 

data processing and increased biological significance of 

the predictions. In the context of breast cancer, the 

influence of molecular subtypes on treatment and 

prognosis is particularly crucial. 

Although GediNET surpasses standard feature selection 

methods, it is important to acknowledge that 

incorporating these advanced approaches with 

conventional techniques can yield a more 

comprehensive study. For example, whereas approaches 

like as XGB and IG also demonstrated impressive 

performance, GediNET stands out due to its distinctive 

capability to include and analyze intricate biological 

data sets, providing a more profound understanding of 

genetic relationships and pathway involvements. 

The practical consequences of these discoveries are 

significant. GediNET enhances the precision of breast 

cancer subtype classification, hence facilitating more 

accurate diagnostics. This is crucial for customizing 

treatment methods to suit the specific needs of each 

patient. This technique of precision medicine holds the 

potential to improve therapeutic results by focusing on 

treatments that have a high probability of being 

successful, based on the genetic characteristics of the 

tumor. 

 

6. Conclusion 

To summarize, this study emphasizes the considerable 

capacity of the GediNET approach to transform the area 

of cancer genomics by accurately categorizing different 

subtypes of breast cancer. Using sophisticated machine 

learning techniques and extensive biological expertise, 

GediNET surpasses conventional approaches and 

facilitates the development of enhanced, precise, and 

individualized cancer therapies. GediNET, a tool in the 

field of bioinformatics, will have a crucial role in 

converting intricate genomic data into practical clinical 

insights. This will ultimately improve patient outcomes 

in the field of oncology. 

This work contributes to the continuing discussion in 

computational biology, highlighting the crucial 

importance of creative, analytical frameworks in the age 

of large-scale data and customized medicine. Therefore, 

this study's results can shape future research and clinical 

practices, significantly impacting the management and 

treatment of breast cancer. 

Additional study is recommended to broaden the 

usefulness of the GediNET tool with other types of 

cancer and other disorders. The tool's predicted accuracy 

may be further validated and improved by including a 

more comprehensive range of genetic data sources. 

Furthermore, investigating the incorporation of 

GediNET with other artificial intelligence (AI) tools 

may result in the development of more resilient systems 

for disease diagnosis and prognosis. 
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