Predictive Customer Analytics: Machine Learning for Churn Prediction and Retention

Authors

  • Tasneem Qaraeen Faculty of Engineering and Information Technology, Palestine Ahliya University (Palestine)
  • Nora Qaqour Faculty of Engineering and Information Technology, Palestine Ahliya University (Palestine)
  • Sameh Taqatqa Faculty of Engineering and Information Technology, Palestine Ahliya University (Palestine) https://orcid.org/0009-0006-0017-4870

DOI:

https://doi.org/10.59994/ajbtme.2024.1.11

Abstract

Customer churn presents a big challenge in the industry. Businesses have to deal with the problem of customers stopping using their products and services due to dissatisfaction, competitive offers, more affordable alternatives, or changing needs. Churn can be damaging to businesses since it causes revenue loss and higher costs. To address this issue, our research aimed to develop a prediction model that helps predict customer churn. We started with getting the data set about telecommunication. Our analysis and model development were based on this dataset. Then we did data visualization to gain a better understanding of the data through multiple charts. After that, we performed data preparation. First, we did data transformation, data cleansing to address missing values and outliers; feature selection was done, and finally, in this step, the data set was split into testing and training sets. Multiple machine learning algorithms were used for modeling, such as decision trees, random forests, logistic regression, support vector machines, Naïve Bayes, and neural networks. Following model development, we evaluated the model performance with each algorithm using tune model hyperparameters. The decision tree algorithm performed the best with %96.7 accuracy, %96.9 precision, %99.3 recall, and %98.1 F1-score. These findings showed how effective decision tree algorithms are in predicting customer churn. This predictive model will enable telecommunication businesses to predict potential churn, make retention strategies, reduce customer churn and increase customer retention rates.

Keywords:

Customer churn, Machine learning, Tune Model Hypermeters, Accuracy, Precision, Recall, F1-score

References

Abdallah, Z. S., and Webb, G. (2017). Encyclopedia of Machine Learning and Data Mining. Encycl. Mach. Learn. Data Min., no. September 2018. doi: 10.1007/978-1-4899-7687-1. DOI: https://doi.org/10.1007/978-1-4899-7687-1

Ackermann, K., Walsh, J., De Unánue, A., Naveed, H., Navarrete Rivera, A., Lee, S. J., ... & Ghani, R. (2018, July). Deploying machine learning models for public policy: A framework. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 15-22).‏ DOI: https://doi.org/10.1145/3219819.3219911

Ahmad, A. K., Jafar, A., & Aljoumaa, K. (2019). Customer churn prediction in telecom using machine learning and social network analysis in big data platform. arXiv preprint arXiv:1904.00690.‏ DOI: https://doi.org/10.1186/s40537-019-0191-6

Alwis, P. K. D. N. M., Kumara, B. T. G. S., & Hapuarachchi, H. A. C. S. (2018). Customer Churn Analysis and Prediction in Telecommunication for Decision Making.‏ International Conference On Business Innovation (ICOBI), 25-26 August 2018, NSBM, Colombo, Sri Lanka.

Alzubi, J., Nayyar, A., & Kumar, A. (2018, November). Machine learning from theory to algorithms: an overview. In Journal of physics: conference series (Vol. 1142, p. 012012). IOP Publishing.‏ DOI: https://doi.org/10.1088/1742-6596/1142/1/012012

Bäck, T., Kok, J. N., & Rozenberg, G. (2012). Handbook of natural computing. Springer, Heidelberg.‏

Bardenet, R., Brendel, M., Kégl, B., & Sebag, M. (2013, May). Collaborative hyperparameter tuning. In International conference on machine learning (pp. 199-207). PMLR.‏

Bilişik, Ö. N., & Sarp, D. T. (2023). Analysis of Customer Churn in Telecommunication Industry with Machine Learning Methods. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 11(4), 2185-2208.‏ DOI: https://doi.org/10.29130/dubited.1061257

Brandusoiu, I., & Toderean, G. (2013). Churn prediction modeling in mobile telecommunications industry using decision trees. Journal of Computer Science and Control Systems, 6(1), 14.‏

Chen, S., Webb, G. I., Liu, L., & Ma, X. (2020). A novel selective naïve Bayes algorithm. Knowledge-Based Systems, 192, 105361.‏ DOI: https://doi.org/10.1016/j.knosys.2019.105361

Ebrah, K., & Elnasir, S. (2019). Churn prediction using machine learning and recommendations plans for telecoms. Journal of Computer and Communications, 7(11), 33-53.‏ DOI: https://doi.org/10.4236/jcc.2019.711003

Dahouda, M. K., & Joe, I. (2021). A deep-learned embedding technique for categorical features encoding. IEEE Access, 9, 114381-114391.‏ DOI: https://doi.org/10.1109/ACCESS.2021.3104357

Dridi, S. (2021). Supervised learning-a systematic literature review. preprint, Dec.‏

Green, F.. (2018). Business intelligence and data analytics. doi: 10.4324/9781315108537-4. DOI: https://doi.org/10.4324/9781315108537-4

Gürsoy, U. Ş. (2010). Customer churn analysis in telecommunication sector. İstanbul Üniversitesi İşletme Fakültesi Dergisi, 39(1), 35-49.‏

Hossin, M., & Sulaiman, M. N. (2015). A review on evaluation metrics for data classification evaluations. International journal of data mining & knowledge management process, 5(2), 1.‏ DOI: https://doi.org/10.5121/ijdkp.2015.5201

Hu, L., Chen, J., Vaughan, J., Aramideh, S., Yang, H., Wang, K., ... & Nair, V. N. (2021). Supervised machine learning techniques: An overview with applications to banking. International Statistical Review, 89(3), 573-604.‏ DOI: https://doi.org/10.1111/insr.12448

Joseph, V. R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining: The ASA Data Science Journal, 15(4), 531-538.‏ DOI: https://doi.org/10.1002/sam.11583

Joy, T. T., Rana, S., Gupta, S., & Venkatesh, S. (2016, December). Hyperparameter tuning for big data using Bayesian optimisation. In 2016 23rd International Conference on Pattern Recognition (ICPR) (pp. 2574-2579). IEEE.‏ DOI: https://doi.org/10.1109/ICPR.2016.7900023

Kakarla, R., Krishnan, S., Alla, S., Kakarla, R., Krishnan, S., & Alla, S. (2021). Deploying Machine Learning Models. Applied Data Science Using PySpark: Learn the End-to-End Predictive Model-Building Cycle, 361-388.‏ DOI: https://doi.org/10.1007/978-1-4842-6500-0_9

Kavitha, V., Kumar, G. H., Kumar, S. M., & Harish, M. (2020). Churn prediction of customer in telecom industry using machine learning algorithms. International Journal of Engineering Research & Technology (2278-0181), 9(05), 181-184.‏ DOI: https://doi.org/10.17577/IJERTV9IS050022

Khalid, S., Khalil, T., & Nasreen, S. (2014, August). A survey of feature selection and feature extraction techniques in machine learning. In 2014 science and information conference (pp. 372-378). IEEE.‏ DOI: https://doi.org/10.1109/SAI.2014.6918213

Kisioglu, P., & Topcu, Y. I. (2011). Applying Bayesian Belief Network approach to customer churn analysis: A case study on the telecom industry of Turkey. Expert Systems with Applications, 38(6), 7151-7157.‏ DOI: https://doi.org/10.1016/j.eswa.2010.12.045

Kizilkan, Z. B., Sivri, M. S., Yazici, I., & Beyca, O. F. (2022). Neural Networks and Deep Learning. In Business Analytics for Professionals (pp. 127-151). Cham: Springer International Publishing.‏ DOI: https://doi.org/10.1007/978-3-030-93823-9_5

Konieczny, R., & Idczak, R. (2016). Mössbauer study of Fe-Re alloys prepared by mechanical alloying. Hyperfine Interactions, 237, 1-8.‏ DOI: https://doi.org/10.1007/s10751-016-1232-6

Krause, R. W., Huisman, M., Steglich, C., & Snijders, T. (2020). Missing data in cross-sectional networks–An extensive comparison of missing data treatment methods. Social Networks, 62, 99-112.‏ DOI: https://doi.org/10.1016/j.socnet.2020.02.004

Mahesh, B. (2020). Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9(1), 381-386.‏ DOI: https://doi.org/10.21275/ART20203995

Martínez-Plumed, F., Contreras-Ochando, L., Ferri, C., Hernández-Orallo, J., Kull, M., Lachiche, N., ... & Flach, P. (2019). CRISP-DM twenty years later: From data mining processes to data science trajectories. IEEE transactions on knowledge and data engineering, 33(8), 3048-3061.‏ DOI: https://doi.org/10.1109/TKDE.2019.2962680

Model, L. R. (n.d). “Logistic Regression”, doi: 10.1007/978-1-4614-7792-1. DOI: https://doi.org/10.1007/978-1-4614-7792-1

Mohamed, A. E. (2017). Comparative study of four supervised machine learning techniques for classification. International Journal of Applied, 7(2), 1-15.‏

Lozano, J. A., & Santafe, G., Inza, I. (2015). Dealing with the evaluation of supervised classification algorithms. Artificial Intelligence Review, 44, 467-508.‏ DOI: https://doi.org/10.1007/s10462-015-9433-y

Sattler, K. U., & Schallehn, E. (2001, July). A data preparation framework based on a multidatabase language. In Proceedings 2001 International Database Engineering and Applications Symposium (pp. 219-228). IEEE.‏

Seyed, H., Iranmanesh, M., Hamid, M., Bastan, H., Shakouri, G., and Nasiri, M .M., (2019, July). Customer churn prediction using artificial neural network: An analytical CRM application. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Pilsen, Czech Republic (pp. 23-26).‏

Song, Y. Y., & Ying, L. U. (2015). Decision tree methods: applications for classification and prediction. Shanghai archives of psychiatry, 27(2), 130-135.

Soofi, A. A., & Awan, A. (2017). Classification techniques in machine learning: applications and issues. Journal of Basic & Applied Sciences, 13, 459-465.‏ DOI: https://doi.org/10.6000/1927-5129.2017.13.76

Sullivan, E.,“Understanding from machine learning models,” Br. J. Philos. Sci., vol. 73, no. 1, pp. 109–133, 2022, doi: 10.1093/bjps/axz035. DOI: https://doi.org/10.1093/bjps/axz035

Ting, K. M. (2011). Confusion matrix. Encyclopedia of machine learning, 209-209.‏ DOI: https://doi.org/10.1007/978-0-387-30164-8_157

Ullah, I., Raza, B., Malik, A. K., Imran, M., Islam, S. U., & Kim, S. W. (2019). A churn prediction model using random forest: analysis of machine learning techniques for churn prediction and factor identification in telecom sector. IEEE access, 7, 60134-60149.‏ DOI: https://doi.org/10.1109/ACCESS.2019.2914999

Umayaparvathi, V., & Iyakutti, K. (2016, March). Attribute selection and customer churn prediction in telecom industry. In 2016 international conference on data mining and advanced computing (sapience) (pp. 84-90). IEEE.‏ DOI: https://doi.org/10.1109/SAPIENCE.2016.7684171

Vafeiadis, T., Diamantaras, K. I., Sarigiannidis, G., & Chatzisavvas, K. C. (2015). A comparison of machine learning techniques for customer churn prediction. Simulation Modelling Practice and Theory, 55, 1-9.‏ DOI: https://doi.org/10.1016/j.simpat.2015.03.003

Visa, S., Ramsay, B., Ralescu, A. L., & Van Der Knaap, E. (2011). Confusion matrix-based feature selection. Maics, 710(1), 120-127.‏

Wagh, S. K., Andhale, A. A., Wagh, K. S., Pansare, J. R., Ambadekar, S. P., & Gawande, S. H. (2024). Customer churn prediction in telecom sector using machine learning techniques. Results in Control and Optimization, 14, 100342.‏ DOI: https://doi.org/10.1016/j.rico.2023.100342

Wirth, R., & Hipp, J. (2000, April). CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining (Vol. 1, pp. 29-39).

Downloads

Published

2024-07-15

How to Cite

Qaraeen, T. ., Qaqour, N. ., & Taqatqa , S. . (2024). Predictive Customer Analytics: Machine Learning for Churn Prediction and Retention. Ahliya Journal of Business Technology and MEAN Economies, 1(1), 11–28. https://doi.org/10.59994/ajbtme.2024.1.11

Issue

Section

Articles