Satellite Imagery Employed to Analyze the Extent of Urban Land Transformation in The Punjab District of Pakistan

Authors

  • Asif Raza Department of Computer Science, Bahauddin Zakariya University Multan, Punjab (Pakistan) https://orcid.org/0009-0008-8298-9161
  • Inzamam Shahzad School of Computer Science and School of Cyberspace Science, Xiangtan University, Xiangtan, Hunan (China) https://orcid.org/0009-0006-2076-3138
  • Muhammad Salahuddin Department of Computer Science, NFC Institute of Engineering and technology Multan (Pakistan)
  • Sadia Latif Department of Computer Science, Bahauddin Zakariya University Multan, Punjab (Pakistan)

DOI:

https://doi.org/10.59994/pau.2025.2.17

Keywords:

Urbanization Transformation, Machine Learning, Satellite Imagery, Punjab, Pakistan

Abstract

Satellite imagery represents a vital resource for comprehensively analyzing and monitoring the consequences of rapid urbanization. With the continuous expansion of urban areas, satellite data enables the detection of changes in land use, the spread of urban sprawl, and the development of infrastructure. In the Punjab district of Pakistan, accelerated urban growth has had adverse effects on agricultural land, leading to a decline in agricultural productivity and contributing to a national shortage of food supplies. The utilization of satellite images facilitates the assessment of urbanization's impact on key natural resources, including arable land, forests, wetlands, and river systems. Moreover, satellite-based analysis allows for the annual comparison of land transformation ratios, particularly the conversion of agricultural land into urban settlements. This process aids in identifying land ownership patterns and in understanding the spatial extent and progression of urban expansion. Integrating machine learning classifiers such as Random Forest, Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) with satellite data further enhances the accuracy of applications like land cover classification, change detection, and object recognition. The insights derived from these technologies offer valuable support to policymakers and urban planners, enabling them to develop evidence-based strategies for managing urban growth. Ultimately, such information is instrumental in guiding sustainable urban planning efforts, protecting environmental resources, and prioritizing conservation initiatives in rapidly developing regions.

Downloads

Download data is not yet available.

References

Ahmed, B., & Ahmed, R. (2012). Modeling urban land cover growth dynamics using multi temporal satellite images: a case study of Dhaka, Bangladesh. ISPRS International Journal of Geo-Information, 1(1), 3-31. DOI: https://doi.org/10.3390/ijgi1010003

Al-Khasawneh, M. A., Raza, A., Khan, S. U. R., & Khan, Z. (2024). Stock market trend prediction using deep learning approach. Computational Economics, 1-32. DOI: https://doi.org/10.1007/s10614-024-10714-1

Borra, S., Thanki, R., & Dey, N. (2019). Satellite image clustering. In Satellite Image Analysis: Clustering and Classification (pp. 31-52). Singapore: Springer Singapore. DOI: https://doi.org/10.1007/978-981-13-6424-2_3

Busgeeth, K., van den Bergh, F., Whisken, J., & Brits, A. (2008, November). Potential application of remote sensing in monitoring informal settlements in South Africa where complimentary data does not exist. In Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images (Vol. 7147, pp. 97-106). SPIE. DOI: https://doi.org/10.1117/12.813211

Dai, Q., Ishfaque, M., Khan, S. U. R., Luo, Y. L., Lei, Y., Zhang, B., & Zhou, W. (2024). Image classification for sub-surface crack identification in concrete dam based on borehole CCTV images using deep dense hybrid model. Stochastic Environmental Research and Risk Assessment, 1-18. DOI: https://doi.org/10.1007/s00477-024-02743-x

Faid, A. M., & Abdulaziz, A. M. (2012). Monitoring land-use change-associated land development using multitemporal Landsat data and geoinformatics in Kom Ombo area, South Egypt. International Journal of Remote Sensing, 33(22), 7024-7046. DOI: https://doi.org/10.1080/01431161.2012.697207

Farooq, M. U., & Beg, M. O. (2019, November). Bigdata analysis of stack overflow for energy consumption of android framework. In 2019 International Conference on Innovative Computing (ICIC) (pp. 1-9). IEEE. DOI: https://doi.org/10.1109/ICIC48496.2019.8966682

Farooq, M. U., Khan, S. U. R., & Beg, M. O. (2019, November). Melta: A method level energy estimation technique for android development. In 2019 International Conference on Innovative Computing (ICIC) (pp. 1-10). IEEE. DOI: https://doi.org/10.1109/ICIC48496.2019.8966712

Ghalib, A., Qadir, A., & Ahmad, S. R. (2017). Evaluation of developmental progress in some cities of Punjab, Pakistan, using urban sustainability indicators. Sustainability, 9(8), 1473. DOI: https://doi.org/10.3390/su9081473

Giustarini, L., Hostache, R., Matgen, P., Schumann, G. J. P., Bates, P. D., & Mason, D. C. (2012). A change detection approach to flood mapping in urban areas using TerraSAR-X. IEEE transactions on Geoscience and Remote Sensing, 51(4), 2417-2430. DOI: https://doi.org/10.1109/TGRS.2012.2210901

Hassan, E. (2016). Comparative study on the biosorption of Pb (II), Cd (II) and Zn (II) using Lemon grass (Cymbopogon citratus): kinetics, isotherms and thermodynamics. Chem Int, 2(2), 89-102.

Hassan, Z., Shabbir, R., Ahmad, S. S., Malik, A. H., Aziz, N., Butt, A., & Erum, S. (2016). Dynamics of land use and land cover change (LULCC) using geospatial techniques: a case study of Islamabad Pakistan. SpringerPlus, 5(1), 812. DOI: https://doi.org/10.1186/s40064-016-2414-z

Hepcan, S., Hepcan, C. C., Kilicaslan, C., Ozkan, M. B., & Kocan, N. (2013). Analyzing landscape change and urban sprawl in a Mediterranean coastal landscape: a case study from Izmir, Turkey. Journal of Coastal Research, 29(2), 301-310. DOI: https://doi.org/10.2112/JCOASTRES-D-11-00064.1

Khan, S. R., Raza, A., Waqas, M., & Zia, M. A. R. (2023). Efficient and Accurate Image Classification Via Spatial Pyramid Matching and SURF Sparse Coding. Lahore Garrison University Research Journal of Computer Science and Information Technology, 7(4). DOI: https://doi.org/10.54692/lgurjcsit.2023.074532

Khan, S. U. R., & Asif, S. (2024). Oral cancer detection using feature-level fusion and novel self-attention mechanisms. Biomedical Signal Processing and Control, 95, 106437. DOI: https://doi.org/10.1016/j.bspc.2024.106437

Khan, S. U. R., Zhao, M., Asif, S., & Chen, X. (2024 a). Hybrid‐NET: a fusion of DenseNet169 and advanced machine learning classifiers for enhanced brain tumor diagnosis. International Journal of Imaging Systems and Technology, 34(1), e22975. DOI: https://doi.org/10.1002/ima.22975

Khan, U. S., & Khan, S. U. R. (2025). Boost diagnostic performance in retinal disease classification utilizing deep ensemble classifiers based on OCT. Multimedia Tools and Applications, 84(19), 21227-21247. DOI: https://doi.org/10.1007/s11042-024-19922-1

Khan, U. S., Ishfaque, M., Khan, S. U. R., Xu, F., Chen, L., & Lei, Y. (2024 b). Comparative analysis of twelve transfer learning models for the prediction and crack detection in concrete dams, based on borehole images. Frontiers of Structural and Civil Engineering, 18(10), 1507-1523. DOI: https://doi.org/10.1007/s11709-024-1090-2

Li, Y., Cao, Z., Long, H., Liu, Y., & Li, W. (2017). Dynamic analysis of ecological environment combined with land cover and NDVI changes and implications for sustainable urban–rural development: The case of Mu Us Sandy Land, China. Journal of Cleaner Production, 142, 697-715. DOI: https://doi.org/10.1016/j.jclepro.2016.09.011

Lin, Y., Qiu, R., Yao, J., Hu, X., & Lin, J. (2019). The effects of urbanization on China's forest loss from 2000 to 2012: Evidence from a panel analysis. Journal of Cleaner Production, 214, 270-278. DOI: https://doi.org/10.1016/j.jclepro.2018.12.317

Manandhar, R., Odeh, I. O., & Ancev, T. (2009). Improving the accuracy of land use and land cover classification of Landsat data using post-classification enhancement. Remote Sensing, 1(3), 330-344. DOI: https://doi.org/10.3390/rs1030330

Meyer, J. H. (2014). Turks across empires: Marketing Muslim identity in the Russian-Ottoman borderlands, 1856-1914. Oxford University Press. DOI: https://doi.org/10.1093/acprof:oso/9780198725145.001.0001

Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., ... & Ip, A. (2016). Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sensing of Environment, 174, 341-352. DOI: https://doi.org/10.1016/j.rse.2015.11.003

Murmu, P., Kumar, M., Lal, D., Sonker, I., & Singh, S. K. (2019). Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundwater for Sustainable Development, 9, 100239. DOI: https://doi.org/10.1016/j.gsd.2019.100239

Nyatuame, M., Amekudzi, L. K., & Agodzo, S. K. (2020). Assessing the land use/land cover and climate change impact on water balance on Tordzie watershed. Remote Sensing Applications: Society and Environment, 20, 100381. DOI: https://doi.org/10.1016/j.rsase.2020.100381

Patra, S., Mishra, P., & Mahapatra, S. C. (2018). Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. Journal of Cleaner Production, 172, 2485-2502. DOI: https://doi.org/10.1016/j.jclepro.2017.11.161

Raza, A., Meeran, M. T., & Bilhaj, U. (2023). Enhancing breast cancer detection through thermal imaging and customized 2D CNN classifiers. VFAST Transactions on Software Engineering, 11(4), 80-92. DOI: https://doi.org/10.21015/vtse.v11i4.1684

Raza, A., Soomro, M. H., Shahzad, I., & Batool, S. (2024). Abstractive text summarization for Urdu language. Journal of Computing & Biomedical Informatics, 7(02).

Sakieh, Y., Salmanmahiny, A., Jafarnezhad, J., Mehri, A., Kamyab, H., & Galdavi, S. (2015). Evaluating the strategy of decentralized urban land-use planning in a developing region. Land use policy, 48, 534-551. DOI: https://doi.org/10.1016/j.landusepol.2015.07.004

Shahzad, I., Khan, S. U. R., Waseem, A., Abideen, Z. U., & Liu, J. (2024). Enhancing ASD classification through hybrid attention-based learning of facial features. Signal, Image and Video Processing, 18(Suppl 1), 475-488. DOI: https://doi.org/10.1007/s11760-024-03167-4

Tanguay, G. A., Rajaonson, J., Lefebvre, J. F., & Lanoie, P. (2010). Measuring the sustainability of cities: An analysis of the use of local indicators. Ecological indicators, 10(2), 407-418. DOI: https://doi.org/10.1016/j.ecolind.2009.07.013

Tehrany, M. S., Pradhan, B., Mansor, S., & Ahmad, N. (2015). Flood susceptibility assessment using GIS-based support vector machine model with different kernel types. Catena, 125, 91-101. DOI: https://doi.org/10.1016/j.catena.2014.10.017

Zhang, X. Q. (2016). The trends, promises and challenges of urbanisation in the world. Habitat international, 54, 241-252. DOI: https://doi.org/10.1016/j.habitatint.2015.11.018

Zhao, X., He, J., Luo, Y., & Li, Y. (2022). An analytical method to determine typical residential district models for predicting the urban heat island effect in residential areas. Urban Climate, 41, 101007. DOI: https://doi.org/10.1016/j.uclim.2021.101007

Zlotnik, H. (2017). World urbanization: trends and prospects. In New forms of urbanization (pp. 43-64). Routledge. DOI: https://doi.org/10.4324/9781315248073-3

Downloads

Published

2025-08-01

How to Cite

Raza, A., Shahzad, I., Salahuddin, M., & Latif, S. (2025). Satellite Imagery Employed to Analyze the Extent of Urban Land Transformation in The Punjab District of Pakistan. Journal of Palestine Ahliya University for Research and Studies, 4(2), 17–36. https://doi.org/10.59994/pau.2025.2.17

Issue

Section

Articles