Rheology and Morphological Study of Anaemic Red Blood Cell Parameters Irradiated with Blue and Green Laser Beam
DOI:
https://doi.org/10.59994/ajamts.2024.2.1Abstract
Numerous studies have explored the effects of low-level laser therapy (LLLT) on blood parameters over the past decade. This study investigates the in vitro effects of blue and green laser light on the rheological properties and morphology of anemic human red blood cells (RBCs). A total of 36 blood samples were collected and analyzed before and after laser irradiation at exposure times of 30, 60, and 90 seconds. Key blood parameters, including hematocrit (HCT), mean cell volume (MCV), and mean corpuscular hemoglobin (MCH), were measured immediately after irradiation using a hematology analyzer, followed by morphological evaluation. Significant changes were observed in HCT and MCV for both blue and green laser irradiation. Notably, RBC deformability increased, particularly after 90 seconds of laser exposure. The findings demonstrate that anemic samples are more affected by laser irradiation than normal samples, with green laser showing a greater impact on RBC morphology compared to blue laser
Keywords:
Low Level Laser, Red Blood Cells Parameters, Rheology, Bio-StimulationReferences
S. S. Mohd Fuad, N. Suardi, and I. S. Mustafa, “In Vitro UV-Visible Spectroscopy Study of Yellow Laser Irradiation on Human Blood,” in Journal of Physics: Conference Series, 2018. doi: 10.1088/1742-6596/995/1/012053.
N. Suardi, B. K. Sodipo, M. Z. Mustafa, and Z. Ali, “Effect of visible laser light on ATP level of anaemic red blood cell,” J. Photochem. Photobiol. B Biol., vol. 162, 2016, doi: 10.1016/j.jphotobiol.2016.07.041.
J. J. Anders, R. J. Lanzafame, and P. R. Arany, “Low-Level Light/Laser Therapy Versus Photobiomodulation Therapy,” Photomed. Laser Surg., vol. 33, no. 4, pp. 183–184, 2015, doi: 10.1089/pho.2015.9848.
K. M. Alghamdi and A. Kumar, “Low-level laser therapy : a useful technique for enhancing the proliferation of various cultured cells,” Lasers Med. Sci., vol. 27, pp. 237–249, 2012, doi: 10.1007/s10103-011-0885-2.
J. F. Black and J. K. Barton, “Chemical and Structural Changes in Blood Undergoing Laser,” Photochem. Photobiol., vol. 80, pp. 89–97, 2004.
M. S. Al Musawi, M. S. Jaafar, B. Al-Gailani, N. M. Ahmed, F. M. Suhaimi, and N. Suardi, “Effects of low-level laser irradiation on human blood lymphocytes in vitro,” Lasers Med. Sci., vol. 32, no. 2, 2017, doi: 10.1007/s10103-016-2134-1.
E. Khalkhal, M. Razzaghi, M. Rostami-Nejad, M. Rezaei-Tavirani, H. Heidari Beigvand, and M. Rezaei Tavirani, “Evaluation of laser effects on the human body after laser therapy,” J. Lasers Med. Sci., vol. 11, no. 1, pp. 91–97, 2020, doi: 10.15171/jlms.2020.15.
G. K. Reddy, S.-B. Lisa, and S. E. Chukuka, “Laser Photo Stimulation accelerates wound healing in diabetic rats,” Wound Repair Regen, vol. 9, no. 3, pp. 248–255, 2001.
J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution.,” Phys. Med. Biol., vol. 50, no. 18, pp. 4409–28, Sep. 2005, doi: 10.1088/0031-9155/50/18/011.
N. Suardi, S. J. Germanam, and N. A. Y. M. Rahim, “Acoustic evaluation of photobiomodulation effect on in vitro human blood samples,” Lasers Med. Sci., vol. 38, no. 1, pp. 1–6, 2023, doi: 10.1007/s10103-023-03766-6.
C. Ding et al., “Association between serum albumin and peripheral arterial disease in hypertensive patients,” J. Clin. Hypertens., vol. 22, no. 12, pp. 2250–2257, 2020, doi: 10.1111/jch.14071.
M. S. A. Al Musawi, M. S. Jafar, B. T. Al-Gailani, N. M. Ahmed, F. M. Suhaimi, and N. Suardi, “In Vitro Mean Red Blood Cell Volume Change Induced by Diode Pump Solid State Low-Level Laser of 405 nm,” Photomed. Laser Surg., vol. 34, no. 5, 2016, doi: 10.1089/pho.2015.4043.
S. Y. Tam, V. C. W. Tam, S. Ramkumar, M. L. Khaw, H. K. W. Law, and S. W. Y. Lee, “Review on the Cellular Mechanisms of Low-Level Laser Therapy Use in Oncology,” Front. Oncol., vol. 10, no. July, 2020, doi: 10.3389/fonc.2020.01255.
V. M. Barodka et al., “Blood Cells , Molecules and Diseases New insights provided by a comparison of impaired deformability with erythrocyte oxidative stress for sickle cell disease,” Blood Cells, Mol. Dis., vol. 52, no. 4, pp. 230–235, 2014, doi: 10.1016/j.bcmd.2013.10.004.
P. M. N. Steven M. Frank, Charles W. Hogue and Bagrat Abazyan, “Decreased Erythrocyte Deformability After Transfusion and the Effects of Erythrocyte Storage Duration,” Anesth Analg., vol. 116, no. 5, pp. 975–981, 2013, doi: 10.1213/ANE.0b013e31828843e6.Decreased.
G. M. T. Hare and C. D. Mazer, “Anemia: Perioperative Risk and Treatment Opportunity,” Anesthesiology, vol. 135, no. 3, pp. 520–530, 2021, doi: 10.1097/ALN.0000000000003870.